

Precision ANALOG MULTIPLIER

FEATURES

- $\pm 0.25 \%$ max 4-QUADRANT ACCURACY
- WIDE BANDWIDTH: 1MHz min, 3MHz typ
- ADJUSTABLE SCALE FACTOR
- StABLE AND RELIABLE MONOLITHIC CONSTRUCTION
- LOW COST

APPLICATIONS

- PRECISION ANALOG SIGNAL PROCESSING
- VIDEO SIGNAL PROCESSING
- VOLTAGE CONTROLLED FILTERS AND OSCILLATORS
- MODULATION AND DEMODULATION
- RATIO AND PERCENTAGE COMPUTATION

DESCRIPTION

The MPY534 is a high accuracy, general purpose four-quadrant analog multiplier. Its accurately laser trimmed transfer characteristics make it easy to use in a wide variety of applications with a minimum of external parts and trimming circuitry. Its differential X, Y and Z inputs allow configuration as multiplier, squarer, divider, square-rooter and other functions while maintaining high accuracy.
The wide bandwidth of this new design allows accurate signal processing at higher frequencies suitable for video signal processing. It is capable of performing IF and RF frequency mixing, modulation and demodulation with excellent carrier rejection and very simple feedthrough adjustment.

An accurate internal voltage reference provides precise setting of the scale factor. The differential Z input allows user selected scale factors from 0.1 to 10 using external feedback resistors.

SPECIFICATIONS

ELECTRICAL

$T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise specified.

SPECIFICATIONS (CONT)

ELECTRICAL

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise specified.

PARAMETER	MPY534J			MPY534K			MPY534L			MPY534S			MPY534T			UNITS
	MIN	TYP	MAX													
SQUARE PERFORMANCE Transfer Function Total Error $(-10 \mathrm{~V} \leq \mathrm{X} \leq 10 \mathrm{~V})$		0.6		$\begin{aligned} & \frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}}{10 \mathrm{~V}}+\mathrm{Z}_{2} \\ & \quad \pm 0.3 \end{aligned}$				± 0.2			± 0.6					\%
SQUARE-ROOTER PERFORMANCE Transfer Function $\left(Z_{1} \leq Z_{2}\right)$ Total Error ${ }^{(1)}(1 \mathrm{~V} \leq \mathrm{Z} \leq 10 \mathrm{~V})$		± 1.0		$\sqrt{10 V\left(Z_{2}-Z_{1}\right)+}$				± 0.25			± 1.0			± 0.5		\%
POWER SUPPLY Supply Voltage: Rated Performance Operating Supply Current, Quiescent	*		*	± 8	$\begin{gathered} \pm 15 \\ 4 \end{gathered}$	$\begin{gathered} \pm 18 \\ 6 \end{gathered}$	*		*	*		$\pm{ }_{*}$	*		$\underset{*}{ \pm}$	VDC VDC mA
TEMPERATURE RANGE Operating Storage	*		*	$\begin{gathered} 0 \\ -65 \end{gathered}$		+70 +150	*		*	$\stackrel{-55}{*}$		$\underset{*}{125}$	-55		+125	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

*Specifications same as for MPY534K.
NOTES: (1) Figures given are percent of full scale, $\pm 10 \mathrm{~V}$ (i.e., $0.01 \%=1 \mathrm{mV}$). (2) May be reduced to 3 V using external resistor between -Vs and SF . (3) Irreducible component due to nonlinearity; excludes effect of offsets.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MPY534J, K, L	MPY534S, T
Power Supply Voltage	± 18	± 20
Power Dissipation	500 mW	$*$
Output Short-Circuit to Ground	Indefinite	$*$
Input Voltage (all X, Y and Z)	$\pm \mathrm{V}_{\mathrm{S}}$	$*$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$*$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$	$*$

*Specification same as for MPY534K.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER $^{(1)}$
MPY534JD	Ceramic DIP	169
MPY534JH	Metal TO-100	007
MPY534KD	Ceramic DIP	169
MPY534KH	Metal TO-100	007
MPY534LD	Ceramic DIP	169
MPY534LH	Metal TO-100	007
MPY534SD	Ceramic DIP	169
MPY534SH	Metal TO-100	007
MPY534TD	Ceramic DIP	169
MPY534TH	Metal TO-100	007

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
MPY534JD	Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534JH	Metal TO-100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534KD	Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534KH	Metal TO-100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534LD	Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534LH	Metal TO-100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MPY534SD	Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MPY534SH	Metal TO-100	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MPY534TD	Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MPY534TH	Metal TO-100	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CURVES

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{V}_{\mathrm{CC}}=15 \mathrm{VDC}$, unless otherwise noted

THEORY OF OPERATION

The transfer function for the MPY534 is:

$$
\mathrm{V}_{\text {OUT }}=\mathrm{A}\left[\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)}{\mathrm{SF}}-\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)\right]
$$

where:
A = Open-loop gain of the output amplifier (typically 85 dB at DC).
$\mathrm{SF}=$ Scale Factor. Laser-trimmed to 10 V but adjustable over a 3 V to 10 V range using external resistor.
X, Y, A are input voltages. Full-scale input voltage is equal to the selected SF. (Max input voltage $=$ ± 1.25 SF.)
An intuitive understanding of transfer function can be gained by analogy to an op amp. By assuming that the open-loop gain, A , of the output amplifier is infinite, inspection of the transfer function reveals that any $\mathrm{V}_{\text {out }}$ can be created with an infinitesimally small quantity within the brackets. Then,

an application circuit can be analyzed by assigning circuit voltages for all X, Y and Z inputs and setting the bracketed quantity equal to zero. For example, the basic multiplier connection in Figure $1, \mathrm{Z}_{1}=\mathrm{V}_{\text {out }}$ and $\mathrm{Z}_{2}=0$. The quantity within the brackets then reduces to:

$$
\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)}{\mathrm{SF}}-\left(\mathrm{V}_{\mathrm{OUT}}-0\right)=0
$$

This approach leads to a simple relationship which can be solved for $\mathrm{V}_{\text {out }}$.
The scale factor is accurately factory-adjusted to 10 V and is typically accurate to within 0.1% or less. The scale factor may be adjusted by connecting a resistor or potentiometer between pin SF and the $-\mathrm{V}_{\mathrm{S}}$ power supply. The value of the external resistor can be approximated by:

$$
\mathrm{R}_{\mathrm{SF}}=5.4 \mathrm{k} \Omega\left[\frac{\mathrm{SF}}{10-\mathrm{SF}}\right]
$$

Internal device tolerances make this relationship accurate to within approximately 25%. Some applications can benefit from reduction of the SF by this technique. The reduced input bias current and drift achieved by this technique can be likened to operating the input circuitry in a higher gain, thus reducing output contributions to these effects. Adjustment of the scale factor does not affect bandwidth.

The MPY534 is fully characterized at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, but operation is possible down to $\pm 8 \mathrm{~V}$ with an attendant reduction of input and output range capability. Operation at voltages greater than $\pm 15 \mathrm{~V}$ allows greater output swing to be achieved by using an output feedback attenuator (Figure 2).

BASIC MULTIPLIER CONNECTION

Figure 1 shows the basic connection as a multiplier. Accuracy is fully specified without any additional user trimming circuitry. Some applications can benefit from trimming one or more of the inputs. The fully differential inputs facilitate referencing the input quantities to the source voltage common terminal for maximum accuracy. They also allow use of simple offset voltage trimming circuitry as shown on the X input.
The differential Z input allows an offset to be summed in $\mathrm{V}_{\text {out }}$. In basic multiplier operation, the Z_{2} input serves as the output voltage reference and should be connected to the ground reference of the driven system for maximum accuracy.
A method of changing (lowering) SF by connecting to the SF pin was discussed previously. Figure 2 shows another method of changing the effective SF of the overall circuit using an attenuator in the feedback connection to Z_{1}. This method puts the output amplifier in a higher gain and is thus accompanied by a reduction in bandwidth and an increase in output offset voltage. The larger output offset may be reduced by applying a trimming voltage to the high impedance input Z_{2}.
The flexibility of the differential Z inputs allows direct conversion of the output quantity to a current. Figure 3 shows the output voltage differentially-sensed across a series resistor forcing an output-controlled current. Addition of a capacitor load then creates a time integration function useful in a variety of applications such as power computation.

SQUARER CIRCUIT

Squarer operation is achieved by paralleling the X and Y inputs of the standard multiplier circuit. Inverted output can be achieved by reversing the differential input terminals of either the X or Y input. Accuracy in the squaring mode is typically a factor of two better than the specified multiplier mode with maximum error occurring with small (less than 1V) inputs. Better accuracy can be achieved for small input voltage levels by using a reduced SF value.

FIGURE 1. Basic Multiplier Connection.

FIGURE 2. Connections for Scale-Factor of Unity.

FIGURE 3. Conversion of Output to Current.

DIVIDER CIRCUIT

The MPY534 can be configured as a divider as shown in Figure 4. High impedance differential inputs for the numerator and denominator are achieved at the Z and X inputs, respectively. Feedback is applied to the Y_{2} input, and Y_{1} can be summed directly into $\mathrm{V}_{\text {out }}$. Since the feedback connection is made to a multiplying input, the effective gain of the output op amp varies as a function of the denominator input voltage. Therefore, the bandwidth of the divider function is proportional to the denominator voltage (see Typical Performance Curves).

Accuracy of the divider mode typically ranges from 0.75\% to 2.0% for a 10 to 1 denominator range depending on device grade. Accuracy is primarily limited by input offset voltages and can be significantly improved by trimming the offset of the X input. A trim voltage of $\pm 3.5 \mathrm{mV}$ applied to the "low side" X input (X_{2} for positive input voltages on X_{1}) can produce similar accuracies over a 100 to 1 denominator range. To trim, apply a signal which varies from 100 mV to 10 V at a low frequency (less than 500 Hz) to both inputs. An offset sine wave or ramp is suitable. Since the ratio of the quantities should be constant, the ideal output would be a constant 10 V . Using AC coupling on an oscilloscope, adjust the offset control for minimum output voltage variation.

FIGURE 4. Basic Divider Connection.

SQUARE-ROOTER

A square-rooter connection is shown in Figure 5. Input voltage is limited to one polarity (positive for the connection shown). The diode prevents circuit latch-up should the input go negative. The circuit can be configured for negative input and positive output by reversing the polarity of both the X and Y inputs. The output polarity can be reversed by reversing the diode and X input polarity. A load resistance of approximately $10 \mathrm{k} \Omega$ must be provided. Trimming for improved accuracy would be accomplished at the Z input.

FIGURE 5. Square-Rooter Connection.

APPLICATIONS

FIGURE 6. Difference-of-Squares.

FIGURE 7. Voltage-Controlled Amplifier.

FIGURE 8. Sine-Function Generator.

FIGURE 9. Linear AM Modulator.

FIGURE 11. Bridge-Linearization Function.

FIGURE 10. Percentage Computer.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

